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Meander bends typically show certain systematic deviations from simple Cartesian 
sinusoidal forms. Bends tend to be round and full, or ‘fat’, often to the point of 
possessing double-valued plan-forms, as Langbein & Leopold ( 1966) have noted. 
Bends also tend to be characteristically skewed in such a fashion that their direction 
of migration can be determined directly from an aerial photograph of the planform; 
the water margin of the downstream accreting half of a point bar describes a convex 
planform, whereas the upstream eroding side has a concave shape. 

In the present paper a generalized nonlinear equation of bend migration is treated 
based on the analysis of Part 1 (Ikeda, Parker & Sawai 1981). An expansion technique 
reminiscent of the Stokes expansion for water waves is developed to perform a non- 
linear stability analysis. This analysis provides an explanation of skewing and fatten- 
ing, and also indicates that lateral and downstream migration rates should increase as 
bend amplitude develops. These results agree qualitatively with field observations. 

1. Introduction 
The linear theory of bend instability presented in Part 1 of this work (Ikedn, Parker 

& Sawai 198 1 ) provides a description of the initial growth and downstream migration 
of sinusoidal channel meandering of infinitesimal amplitude. In  the case of finite- 
amplitude bends, however, nonlinear effects may be presumed to cause modification 
of growth and migration rates, and to deform the bends in some characteristic way. 
This nonlinear problem is approached herein. 

Before embarking on a formal analysis, it is perhaps useful to categorize heuristically 
two ways in which natural meanders differ from the simple sinusoidal pattern used in 
the preceding linear analysis, viz. 

(1) 

(equation (17) at t = 0 therein; only parameters that do not appear in the preceding 
paper are defined herein). The first systematic deviation may be termed ‘fatness’; 
it is implicit in the ‘sine-generated curve’ of Langbein & Leopold (1966). They noted 

y = E cos kx 
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that the bends of many meandering streams are so round and full (i.e. 'fat') that the 
Cartesian representation y = y(x) is not single-valued (figure 1). They suggested that 
specifying the curve in intrinsic co-ordinates a8 

8 = -OBmaxsinKs, (2) 

where 0 is angle, s is arc length, 8,,, is the angular amplitude, and K is the arc-length, 
or intrinsic meander wavenumber (all parameters made dimensionless after the 
fashion of the preceding paper), provides a much better representation. The rather 
extreme value of Omsx of 115" is used in figure 1 a to illustrate (2). 

Equation (2) can be converted to Cartesian co-ordinates via the nonlinear 
transformations 

where y = cos 0.  The case of small-amplitude meandering, in the sense that 

6 , = k s <  1, 

provides an illustration of the fattening implicit in equation (2). Transformed to 
Cartesian co-ordinates, it  becomes 

y = B[COS kx - 8; JF cos 3kz  + o(@)], (4a) 

where JF = 71144, and 

k = K [ 1  f $6; + o(631. (4c) 

Thus the geometric nonlinear transformation from (2) to (4a) involves the genera- 
tion of higher-order modes. The role of the third-order term containing JF in (4a )  is 
to fatten the base mode, and thus it is called the 'Cartesian coefficient of fattening' 
herein. Although the specific value of JF associated with the sine-generated curve is 
given by 71144, it is clear that any positive choice provides fattening (figure l b ) .  

Meander bends also differ systematically from simple sinusoidal waves in a second, 
little-mentioned way. Bends that are actively migrating downstream tend to show a 
marked asymmetry in shape that allows one to determine the direction of migration 
(and thus flow) directly from an aerial photograph. This inherent skewing is schematized 
in figure 2, in which a line has been drawn so as to bisect a point bar into upstream and 
downstream portions. The bar is seen to possess a convex bank outline on one side 
and a concave outline on the other side. Typically the convex side is an area of sedi- 
ment accretion, often marked by scroll bars; the concave side is usually being eroded. 
If the bend is to  migrate downstream, the accreting convex side must be downstream 
of the eroding concave side. Skewing is apparent in both the free meanders of 
figure 3a and the confined meanders of figure 3b .  

While skewing has been noted in passing by many, only a few authors have attached 
any significance to it. Kinoshita (1961) has documented its ubiquitousness, and has 
qualitatively associated its formation with points of low downstream migration speed, 
located between bend apexes and turning points. Narai (1975) employed a numerical 
analysis in an early attempt to explain it. 
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(4 ( b )  

FIGURE 1. (a) The sine-generated curve for Om,, = 115". ( b )  Subtraction of the third-mode 
term (0.1 cos 3kz)  from the first-mode term (cos k z )  yields a rounder, fatter curve. 

FIGURE 2. A typical bend and point bar illustrating skewing. 

Heuristically, skewing in Cartesian co-ordinates of fairly small-amplitude bends 
can be described by adding another third-mode term to equation (4a); to 0(6:), it 
becomes 

(5) 

Here J, is the 'Cartesian coefficient of skewing'; it must be positive for flow in the 
positive x direction. The choices b',, = 0.98, JF = 0.073, J, = 0-103 provide a fairly 
accurate representation of a reach of the Beaver River, Canada of figure 3 b ;  this is 
shown in figure 4. 

A mechanism which leads to the production of higher Fourier modes from a base 
mode without external excitation must be nonlinear. Herein an expansion technique 
is developed for the nonlinear bend equation of the preceding paper; its application 
allows for an explanation of fattening and skewing, in addition to indicating the effects 
of the nonlinear terms on the growth and migration rates of bends. 

y = e(cos kx - 6: JF cos 3k - 8: J, sin 3kx). 
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( b )  
FIGURE 3. (a)  A reach of tlie Pembina River, Alberta, Canada. 

( b )  A reach of the Reawr  River, Alberta, Canada. 

3 0 

FIGURE 4. The dashed line represents tlie observed centre-line of the reach of thc Beaver River 
in figure 3a;  the solid line represents the approxiination provided by equation ( 5 )  with 6 = 0.98, 
JF = 0.073 and Js = 0.103. 

2. The nonlinear expansion 
The expansion technique used herein to perform a nonlinear stability analysis is 

similar to the Stokes expansion for finite-amplitude water waves (see, for example, 
Whitham 1974). 

Before embarking on the analysis, however, i t  is useful to have a criterion for deter- 
mining the initial stability characteristics of an equation that can apply to nonlinear 
as well as linear equations. Let y = O+y', where y' is a perturbation assumed to be 
periodic in x with wavenumber k.  The root-mean-square amplitude of the perturbation 
is defined to be y*, where 



Bend theory of river meanders. Part 2 307 

A bulk growth rate a, can then be defined at t = 0 ;  

The parameter a, provides an unambiguous indication as to whether or not a pertur- 
bation tends to grow or die in amplitude at t = 0, regardless of whether or not y' 
refers to an infinitesimal or finite-amplitude perturbation. 

The nonlinear bend equation (15) in the analysis of Part 1, takes the form 

where d = A + F2, A is equal to 2.89 for alluvial meanders, F is Froude number and Cf 
is a friction coefficient of the unperturbed flow, e is a constant expected to be positive, 
and 

x = (j7)4. 1 
y = cose = 

(1 + @)a. 
These terms provide nonlinear coupling between reach-averaged and fluctuating flows; 
they account for the increase in channel sinuosity and consequent decrease in slope 
as bend amplitude increases. 

The derivation of the nonlinear bend equation involved the neglect of O( v3) dynamic 
nonlinearities. The following analysis accounts for O(@) geometric nonlinearities. 
The neglect of the former but the retention of the latter is justified if (v/S,)~ < 1 .  
For bends of small amplitude 

so that 

A typical ratio of meander bend wavelength to half-width is about 20, so that the 
approximation is justified. 

The linear stability of (6) can be examined with the perturbation 

where 

and Q < 1.  Clearly a, = ag, as would be expected. 

expansion for the nonlinear case; 
The method of Stokes for finite-amplitude water waves suggests the following 

where 

and 
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I n  fact, it is possible to obtain a valid expansion for small time by the use of an 
unstrained expansion, i.e. one with a, and w2 equal to zero. The straining implicit in 
(1 I), however, provides an explicit description of the variation of rates of migration 
and growth with amplitude. 

The above expansion procedure is now applied to (7) .  Noting t h t  

y = 1 - $  k%2p;2+ ... , 
x = l - + k 2 c 2 p T + . . .  , 

the O(s) and O(c3) expansions of the nonlinear bend equation are found to be 

=%%) = 0, (12) 

9 ( p S 3 )  = $ k 3 { p ~ 2 ( ~ 0 ~ 1  - ~,p; ) } '  - 8k5(~U;2p;)' + C f B k 4 p ; 2 ~ ' ;  - k-+ 2Cf (azjl - w2p;) G 
+p~{+C,k2(ao ,&,  - wopL;) - +k5( 1 + e)& + QCf k4 Wp';}. (13) 

I n  the above, = a/& and ' = 8/84, and the linear operator 2'is given by 

and 
W = P 2 ( 5 + e ) + A ( 2 + e ) .  

Equation (12) yields the linear solution of Part 1, viz. 

( k 4 -  2CjAk2) 2Cf k3( 1 + &x) 
k2 + 4Cj ' 

3 "0 = 
IC2 + 4cj a. = - 

Initial growth-rate a, is maximized a t  the characteristic meander wavenumber 

and p = 2{ - 1 + (1 + $A)a}*. At this value of k ,  a. and wo take the values 

aolf = tk&VP2, WOIM = $k;JIP 1 +- (18) ( 7 )  
and 

COAT = Wox/kow 
is found to 

approximate to 1.50. Information presented in Part 1 suggests that  A z 0 in the 
incised case; thus for F2 < 1 i t  is found that /3 2 F. 

For the case of alluvial meanders satisfying the conditions F2 < 1, 

Equations (15) and (1 6) may be used to reduce (13) to the form 

Y(p3) = {e37(8k3wO r& TKC, k4 + $Cf k2ao) - eT(koJ2 + 2Cf a,)) cos $ 
+ {e"( 1 &k3a0 - & W, k5 + $7, k2wo) - e7( - ka,  + 2Cfw2)} sin 4 

+ e3.{( - $k3u0 -+ aCf A k 4 )  cos 3 4  + (@?a0 + gk5) sin 341, ( I  9) 

where W, = F2(8 + e) + A(5 + e )  and W, = 11 + 2e. Note that third-mode terms have 
been generated in the right-hand side of the above equation; these are the results of 
nonlinear interaction associated with skewing and fattening. 
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The reason for pursuing a Stokes-type analysis is the possibility of quantifying 
conveniently the effect of nonlinearities on the growth-rate and migration rate via 
a, and w2. According to the Stokes technique, a2 and w, are chosen so as to make the 
first-mode terms vanish from the right-hand side of (19). However, it is apparent from 
the equation that no constant value of a2 and w2 can be found so as to accomplish this 
due to the difference between the exponential terms eT and e 3 T .  Thus the use of a 
Stokes-type straining fails. Rather than resort to an unstrained expansion to solve 
the problem, the straining technique is modified in the next section. 

3. Modified expansion 
Herein the Stokes technique is modified as follows. It is assumed that, instead of (1 l) ,  

a(7) =ao$s2a ,g (7 )$ . . . ,  w ( 7 )  = wo+s2w,F(7)+a. . ,  (20) 

where F(0) = 1 and F(7) is chosen such that up to O(e2) 

a a a - = ( a. + s2a2 e 2 T )  - - (wo + s2w2 eZT) - 
at a7 ag5. 

After some manipulation the correct choice is found to be 

e2T - 1 
F(7) = - 

27 * 

An expansion of (7 )  with the aid of (9), (10) and (20) then yields (12) and 

9 ( p 3 )  = +k3{p i2 (~0&1 - wopi)}' - #k5(pi2pi)' + C,Bk4,u;2,u~ - e2r k -+  2Cf GJ ) 
(~2P1-w,p;)+,uU;2{9Cfk2(ao&l-w0,u~) - 4k5(l +e),uul:++Crk4W,u;}. (23) 

This equation can be rewritten with the aid of (15), (16a) and (16b) as 

9 ( p 3 )  = e37[{#k3w0 - & F&Cf k4 + +Cf k2ao - (kw, + 2C,a2)} cos 4 + 
{ - if k3a0 - gZ W, k5 + &C, k2wo - ( - ka, + 2Cf w,)} sin 9 

+ ( - #k3w0 + &',ak4) cos 3g5 + (#k3a0 +8k5)  sin 341. (24) 

In  the above equation the temporal functionality takes the form e3T, and thus it is 
possible to find values of a, and (L), so as to cause the first-mode terms to vanish from 
the right-hand side. 

4. Nonlinear effects on growth-rate and downstream migration rate 

must take the forms 
In  order to eliminate first-mode terms from the right-hand side of (24), az and wz 

(25b) 
- &( W, + W,) C, k5 + #k4w0 - +%Cf k3u0 + &C; k2wo 

k2 + 4Cj 
w, = 
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The effects of nonlinear interaction on the behaviour of perturbations at the wave- 
number koonr, associated with maximum initial instability according to the linear 
theory, can now be quantified. It is seen from ( 2 0 )  and ( 2 2 )  that 

a(0) = a, + $a2 + . . .) w ( 0 )  = w, + E2W2 + . . . , 
The above two relations and equations ( 1 6 a ) ,  (166) ,  (17), ( l s a ) ,  and ( 1 8 6 )  yield the 
forms for a(O) and w(O) at k = k,,, 

Likewise c ( o ) ( k o M  = w(0)lk,,/kont. In  the above relations So, = k,,s andfis defined by 

f = F2/Ip2. (27 )  

It is seen from ( 2 6 a )  and ( 2 6 b )  that nonlinear effects reduce both the coefficient of 
instability and migration rate of bends at  the meander length associated with maximum 
linear instability. The true nature of the expansion as one in So, = kOlIs  rather than 
E itself becomes apparent in these two relations. 

However, the value of a(0) itself in ( 2 6 a )  is modified by the nonlinear contribution 
a2, and so the value of k at which a(0) is maximized should be altered accordingly by 
0(6&). With this in mind, let kl,I equal the value of k a t  which a(0) is a maximum. 
One would expect that as a result of nonlinear effects 

By definition 

But from the linear theory aaO/aklkoM = 0;  thus to second order 

or 

From ( 1 6 a ) ,  ( 2 5 a ) ,  (28) and (29) it is found that 

(32  - 4e - 48 f) + (8 - 2e - 6 f ) p  

(1  + iP2)  
The instability coefficient associated with this new characteristic wavenumber at  
7 = 0 is found to be identical tosecond order with ( 2 6 a ) .  Frequency w(0)lkM and 
meander migration speed c ( o ) l k M  are modified, however; after some calculation it is 
found that 

w ( 0 )  lk ,  = wonl[l + &{(24 - 28e - 144f) + (12  - 15e - 54f) P 2  
+ (Q - t e  - sf) p4 - &eP6}/( 1 + t/32)21, (31) 

).  (32 )  
( 8  + 24e + 9 6 f )  + (4 + 12e+ 3 6 f ) p 2  + (& +$e)P4 

c(o)lkM = c O J f { i - d ' % ' ~ H  (1 + tP")" 
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FIGURE 5. Plot of B’ versus e denoting regions where nonlinear effects act to increase or decrease 
alluvial meander Wavelength. 

A complete picture of the effect of geometric nonlinearities on channel migration 
rates up to 0(6&,) can be obtained from (26a) ,  (30) and (32). Since f = F2/p2 is, and 
e is assumed to be, non-negative, the first of these indicates that the growth-rate, i.e. 
the lateral migration rate, should be less in the finite-amplitude case than in the 
linear theory. Likewise, from (32), the downstream migration rate should be reduced 
below the linear value. 

The characteristic meander wavenumber k ,  shows somewhat more complicated 
behaviour; depending on the value o f e  and f, k ,  may be greater than or less than the 
linear value. Two cases are of special interest. In Part 1 evidence was quoted to the 
effect that A = 0 and thus A[ = F2 in the expression for p, for the treatment of incised 
meanders. It is found from (30) that k ,  is always less than kOiTf for this case. On the 
other hand, the approximate value A = 2.89 can be used to describe alluvial meanders. 
In this case k ,  c k,, (and meander wavelength exceeds that of the linear theory) 
only if e is sufficiently large; for F < 1, e must exceed 5.1, and for F = 1, e must exceed 
2.7 (figure 5 ) .  Otherwise, k ,  exceeds ko,,I, and the meander wavelength of the non- 
linear theory is less than that of the linear theory. 

It should be noted that the expansion technique used herein describes the effect of 
amplitude on initial rates of lateral and down-stream migration. It does not extend to 
validity of the expansion in time. 
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5. Fattening and skewing 
The parameters a2 and w2 were chosen so as to cause the first-mode inhomogeneous 

terms in (24) to vanish; thus the third-mode terms remain. The particular solution to 
(24) is found to be 

where 
,u3 = - ( JF cos 3q5 + J, sin 34) k2e3*, (33) 

Replacing these forms into (9), ( lo),  (20), (15), (lea), (16b) and (17), it is found 
that the complete solution evaluated at  the characteristic wavenumber kA,I takes the 
form 

y = e[eaMtcos (k,,x-w,,t) -&&1e3~~t{JFII.l cos 3(k,x-w,t) + Js,sin 3(k,bfx-w,t)}] 

(35) 

up to O(&&,,). In the above kar, aATl and wA1 can be obtained from (30), (26a) and (31), 
respectively, by replacing 

A comparison of equations (5) and (35) reveals that JFM and JsiM are indeed the 
coefficients of fattening and skewing, respectively, at  t = 0. Equations (34a) and 
(34 b )  indicate that both coefficients are positive, in accordance with the observations 
of the introduction. 

Justification of the identification of k,v with the characteristic meander wavenumber 
requires a proof of the identity of 4 7 )  for small time (i.e. r z 0 )  and the bulk growth- 
rate aB given in (6); this is easily established up to order c?:.~. 

therein with S&v9(r).  

6. Summary and qualitative interpretation 
The analysis predicts the following nonlinear effects on bend development. 
(1)  Reduction in lateral and downstream migration rates below the values predicted 

(2) The development of positive fattening and skewing; this development is in- 
by the linear theory. The reduction is intensified as time passes and S ( 7 )  increases. 



Bend theory of river meanders. Part 2 313 

FIGURE 6. Plots of the relation 

y = et cos b ( x  - L$) - &(0.05 cos n(x- Z$t) + 0.05 sin n(z- I$)} at t = 0 

(the solid line) and at t = 0.45 (the dashed line) provide a qualitative illustration of the channel 
deformation predicted by equation (35). 

tensified as time passes. This process is schematized in figure 6, in which a meandering 
reach intensifies its fattening and skewing as lateral and downstream migration progress. 

(3) An increase in characteristic meander wavelength for the case of incised me- 
anders: either an increase or a decrease for the case of alluvial meanders, the former 
applying for sufficiently large e or F and the latter for sufficiently small e or F .  

The first conclusion is supported by the general observation that meander migration 
eventually slows as amplitude increases; Kinoshita (1961) has observed this in alluvial 
streams. 

The second conclusion agrees with the qualitative description of actual alluvial 
bends presented in the introduction, and is the most significant result of the analysis. 

The third conclusion is the only one that is dependent on the numerical values of 
e and F.  A test of its validity is made difficult for two reasons. First, the exact value 
of e is as yet unspecified, although it is expected to be positive. Secondly, no systematic 
change in wavelength as bends increase their amplitude seems to have been clearly 
documented for either the incised or alluvial case. Thus this point remains unresolved 
at present. 

Figure 6 shows two more features of interest. As bends develop according to equation 
(35), a point of least apparent migration is seen to appear just upstream of each bend 
apex. Furthermore the turning point upstream of the apex is seen to migrate toward 
this point of least apparent migration. Kinoshita (1961) vividly described this process 
in natural streams. 

A final point is of coincidental interest. For the case F2 < 1, (34a) yields a value of 
initial coefficient of fatness Jp 0.0478 for alluvial meanders and 0.0469 for incised 
meanders. The corresponding value from the sine-generated curve for the case S,2 < 1 
is seen from equation (4a) to be equal to 0-0486. 
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